Whole Genome Assembly and Alignment

 Michael SchatzOct 25, 2012
CSHL Sequencing Course

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Genome assemblers
I. ALLPATHS-LG
2. SOAPdenovo
3. Celera Assembler
3. Whole Genome Alignment with MUMmer
4. Assembly Tutorial

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was	t thessbldse be.simoestinite	wass and lweonstrof tintesses	it was the age of	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was
best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

Greedy Reconstruction

```
It was the best of
|was the best of times,
times, it was the worst
times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $\mathrm{D}_{\mathrm{k}}=(\mathrm{V}, \mathrm{E})$
- $V=$ All length- k subfragments $(k<l)$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

Milestones in Genome Assembly

1977. Sanger et al. ${ }^{\text {st }}$ Complete Organism 5375 bp

2000. Myers et al.
${ }^{\text {st }}$ Large WGS Assembly.
Celera Assembler. I 16 Mbp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

200I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC ${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
${ }^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads

GGATGCGCGACACGTCGCATATCCGGT...
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

I. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (20I2) Genome Biology. I2:243

Illumina Sequencing by Synthesis

1. Prepare
2. Attach

3. Amplify

4. Image

5. Basecall

Metzker (2010) Nature Reviews Genetics II:3I-46

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

2×100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

Typical contig coverage

Imagine raindrops on a sidewalk

Balls in Bins Ix

Balls in Bins

Total balls: 1000

Balls in Bins $2 x$

Balls in Bins
bals in in
Total balls: 2000

Balls in Bins 3x

Balls in Bins
Total balls: 3000

Balls in Bins 4x

Balls in Bins
bals in in
Total balls: 4000

Balls in Bins 5x

Balls in Bins
Tetal balls: 5000

Balls in Bins 6x

Balls in Bins
Total balls: 6000

Balls in Bins 7x

Balls in Bins
Total balls: 7000

Balls in Bins $8 x$

Balls in Bins
Total balls: 8000

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
- Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
- Recommend I00x coverage

Lander Waterman Expected Contig Length vs Coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:1165-II73.

Two Paradigms for Assembly

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:I I65-II73.

Errors

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"
- Unitigs end because of (I) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

(Chaisson, 2009)

Repars Repeats and Read Length

- Explore the relationship between read length and contig N50 size
- Idealized assembly of read lengths: $25,35,50,100,250,500,1000$
- Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (20I0) BMC Bioinformatics. II:2I.

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where $\mathrm{I} \leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence $(\sim 280 \mathrm{bp})$ Mariner elements $(\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons	3%	
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat
- Requires an accurate genome size estimate
$\operatorname{Pr}(X-$ copy $)=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k}$

$$
A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC regions
- Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
- Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
- Uniqueness measured by a statistical test on coverage

N50 size

Def: 50% of the genome is in contigs larger than N50

Example: I Mbp genome 50\%

N50 size $=30 \mathrm{kbp}$
$(300 k+100 k+45 k+45 k+30 k=520 k>=500 k b p)$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Break

Assembly Algorithms

ALLPATHS-LG	SOAPdenovo	Celera Assembler
Broad's assembler (Gnerre et al. 201 I)	 BGI's assembler (Li et al. 20IO)	 JCVI's assembler (Miller et al. 2008)
De bruijn graph Short + PacBio (patching)	De bruijn graph Short reads	Overlap graph Medium + Long reads
Easy to run if you have compatible libraries	Most flexible, but requires a lot of tuning	Supports Illumina/454/PacBio Hybrid assemblies
http://www.broadinstitute.org/ software/allpaths-Ig/blog/	http://soap.genomics.org.cn/ soapdenovo.htm	http://wgs-assembler.sf.net

Genome assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works

reads

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage ($\mathbf{(x)}$	Required
Fragment	180^{*}	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no $^{* *}$
Fosmid jump	40,000	≥ 26	1	no $^{* *}$

*See next slide.
**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Error correction

Given a crystal ball, we could stack reads on the chromosomes they came from (with homologous chromosomes separate), then let each column 'vote':

But we don't have a crystal ball....

Error correction

ALLPATHS-LG. For every K-mer, examine the stack of all reads containing the K-mer. Individual reads may be edited if they differ from the overwhelming consensus of the stack. If a given base on a read receives conflicting votes (arising from membership of the read in multiple stacks), it is not changed. ($\mathrm{K}=24$)

columns inside the kmer are homogeneous
Two calls at Q20 or better are enough to protect a base

Read doubling

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Unipaths

Unipath: unbranched part of genome - squeeze together perfect repeats of size $\geq \mathrm{K}$

Adjacent unipaths overlap by K-1 bases

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number $\mathrm{CN}=1$)
II. Form neighborhood around each seed

and are extended by other unipaths

Create assembly from global assembly graph

Large genome recipe: ALLPATHS-LG vs capillary

Genome assembly with SOAPdenovo

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
- SOAPdenovo (Li et al., 20I0) pthreads: 40 cores $\times 40$ hours, > 140 GB RAM

Error Correction with Quake

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

2. Correction Algorithm

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. I I:R I I6

Illumina Sequencing \& Assembly

Quake Results

Validated	$5 I, 243,28 I$	88.5%
Corrected	$2,763,380$	4.8%
Trim Only	$3,273,428$	5.6%
Removed	$606,25 I$	1.0%

SOAPdenovo Results

	$\# \geq 100 \mathrm{bp}$	N50 (bp)
Scaffolds	2,340	253,186
Contigs	2,782	56,374
Unitigs	4,151	20,772

Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

I. Pre-overlap

- Consistency checks

2. Trimming

- Quality trimming \& partial overlaps

3. Compute Overlaps

- Find high quality overlaps

4. Error Correction

- Evaluate difference in context of overlapping reads

5. Unitigging

- Merge consistent reads

6. Scaffolding

- Bundle mates, Order \& Orient

7. Finalize Data

- Build final consensus sequences

Hybrid Sequencing

Illumina
Sequencing by Synthesis
High throughput ($60 \mathrm{Gbp} /$ day) High accuracy (~99\%)
Short reads (~100bp)

Pacific Biosciences
SMRT Sequencing
Lower throughput (600Mbp/day)
Lower accuracy ($\sim 85 \%$)
Long reads (2-5kbp+)

SMRT Sequencing Data

Yeast (Pre-release Chemistry / 2010)
 65 SMRT cells
 734,151 reads after filtering
 Mean: 642.3 +/- 587.3
 Median: 553 Max: 8,495

ttgtanglagttganaictatgtgtggatttagantanagancatganag
 tTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

Attataial Cagttgatccatt-AgAAgA-AAACGCAAAAGGCGGCTAGg
 A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
 C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
 T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
 GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA АСТ-ААТТСАСААТА-ААТААСАСТTTTA-ACAGAATTGAT-GGAA-GTT
 ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT

TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
 TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG ||||||| ||||||||| |||||| ||||| ||||||||||||||||| ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

Sample of 100 k reads aligned with BLASR requiring $>100 \mathrm{bp}$ alignment Average overall accuracy: 83.7\%, II .5\% insertions, 3.4% deletions, I.4\% mismatch

PacBio Error Correction

http://wgs-assembler.sf.net
I. Correction Pipeline
I. Map short reads to long reads
2. Trim long reads at coverage gaps
3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:I0.I038/nbt. 2280

Error Correction Results

Correction results of $20 \times$ PacBio coverage of E. coli KI2 corrected using 50x Illumina

SMRT-Assembly Results

Orgarivn	Tectrology	Melfrnace bp	Axembly bp	EConigs	Mas Contig Lengeh	Nso
Limbla NE83011	Thamina 100× 2006	48500	48492	1	$48.492 / 48492$	48492743492 (100\%) *
(medarc 727 max: 3280)	PacBio Pres 28X		48440	t	45,444/48444	$48444 f 45450$ (100\% $)$ *
E.cov K12	Thanins 100X 500\%p	4679675	4462896	61	$221615 / 221583$	
(modarx 747 mas: 3068)	Pactio Prose 18 X		4465513	77	$290058 / 218225$	71479 / 68.309 (95.57\%) *
	Boch ISX PawBio PBCR + Iharine 508 5006p		4576046	65	2382727238224	93058 (39.431 (96.11\%) *
E codiczat-11	Pacaio Ccs 50 X	5 504 407	4517717	76	249515	100322
(modarc 1217 mas: 14901)	Paction 25x. Plick (forrecxed by 25x CCS)		5307946	m	35724	98774
	Both PacBio PBicr $25 \mathrm{X}+\mathrm{CCS} 25 \mathrm{X}$		5769148	39	647362	227300
	PacBio ScK PBCR (comsord by 50x CCS)		5445466	35	1006007	376443
	Both PacBio PBCR S0X $+\operatorname{CCS} 25 \mathrm{X}$		5453458	33	1167060	527198
	Manualy Corrocind ALLIORA Aswernly ${ }^{3}$		5452251	29	653362	462941
5 cenerisioe S228c	Themina 100x 3006p	12157108	1104156	192	$256528 / 227714$	73871 (49254(6658\%) *
(encliane 674 mate: 5994)	PacBio PBer 13 X		11110430	224	224 478/217705	$62888 / 54633$ (66.86%) *
	Both PacBio PBcR 13X + Ilharina 500 3006p		11286932	177	$262846 / 260794$	$82543 / 59792(72.44 \%) *$
Mriopuisaras andularer	Thamins 190x (220\%00900 paired end 2s/10Kb maxe pairs)	123 Gbp	1023512850	28181	1050200	4738
	45415.4 X (FI. X + RLX Ples + M8/20Khy puires endsy		999168009	16574	751729	75178
(modian 997, mas 13009	454 15.4X + FacBio PBirR 3.75X		1071386415	1508 t	1278843	99575

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case

Improved Gene Reconstruction

FOXP2 assembled on a single contig

Transcript Alignment

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
- Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
- Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

PacBio Technology Roadmap

Internal Roadmap has made steady progress towards improving read length and throughput

Very recent improvements:
I. Improved enzyme:

Maintains reactions longer
2. "Hot Start" technology:

Maximize subreads
3. MagBead loading:

Load longest fragments

PacBio Long Read Rice Sequencing

Preliminary Rice Assemblies

Assembly	Contig N50
Illumina Fragments $50 \times 2 \times 100 \mathrm{bp}$ @ 180	3,925
MiSeq Fragments 23x 459bp $8 \times 2 \times 25 \mathrm{Ibp} @ 450$	6,444
PBeCR Reads $6.3 \times 2146 \mathrm{bp}$ ** MiSeq for correction	13,600
Illumina Mates 50x 2x100bp @ 180 36x 2x50bp @ 2100 $51 \times 2 \times 50$ bp @ 4800	13,696
$\begin{aligned} & \text { PBeCR + Illumina Shred } \\ & 6.3 \times 2146 \mathrm{bp} * * \text { MiSeq for correction } \\ & 51 \times 2 \times 50 \mathrm{bp} @ 4800 \end{aligned}$	25,108

In collaboration with McCombie \& Ware labs @ CSHL

- Attempt to answer the question: "What makes a good assembly?"
- Organizers provided simulated sequence data
- Simulated I00 base pair Illumina reads from simulated diploid organism
- 4I submissions from 17 groups
- Results demonstrate trade-offs assemblers must make

Assembly Results

Scaffolds

Scaffold Paths

Contig Paths

BGI
Broad

CSHL

Final Rankings

ID	Overall	CPNG50	SPNG50	Struct．	CC50	Subs．	Copy． Num．	Cov． Tot．	Cov． cos
BGI	36	E					ぶ	E	\hat{z}
Broad	37	है	今	خ人	人				
WTSI－S	46		है	ふे	से	$\hat{\delta}$			
CSHL	52	ぶ							ふ
BCCGSC	53							E	そ
DOEJGI	56		そ	¢	號	そ			
RHUL	58								
WTSI－P	64							ふ人	
EBI	64						む		
CRACS	64					E			

－SOAPdenovo and ALLPATHS came out neck－and－neck followed closely behind by SGA，Celera Assembler，ABySS
－My recommendation for＂typical＂short read assembly is to use ALLPATHS

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

Break

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu

Goal of WGA

- For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

- Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
$-N \times M$ matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell ((i, j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

SV Types

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

Seed-and-extend with MUMmer

How can quickly align two genomes?

I. Find maximal-unique-matches (MUMs)

- Match: exact match of a minimum length
- Maximal: cannot be extended in either direction without a mismatch
- Unique
- occurs only once in both sequences (MUM)
- occurs only once in a single sequence (MAM)
- occurs one or more times in either sequence (MEM)

2. Cluster MUMs

- using size, gap and distance parameters

3. Extend clusters

- using modified Smith-Waterman algorithm

Fee Fi Fo Fum, is it a MAM, MEM or MUM?

MUM : maximal unique match
MAM : maximal almost-unique match \quad - - - - - - - - - - - MEM : maximal exact match

Seed and Extend visualization

FIND all MUMs

CLUSTER consistent MUMs
EXTEND alignments

WGA example with nucmer

- Yersina pestis CO92 vs. Yersina pestis KIM
- High nucleotide similarity, 99.86\%
- Two strains of the same species
- Extensive genome shuffling
- Global alignment will not work
- Highly repetitive
- Many local alignments

WGA Alignment

```
nucmer -maxmatch CO92.fasta KIM.fasta
-maxmatch Find maximal exact matches (MEMs)
delta-filter -m out.delta > out.filter.m
-m Many-to-many mapping
show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position
dnadiff out.delta.m
Construct catalog of sequence variations
mummerplot --large --layout out.delta.m
--large Large plot
--layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)
*requires gnuplot
```

x^{x}

References

- Documentation
- http://mummer.sourceforge.net
» publication listing
- http://mummer.sourceforge.net/manual
» documentation
- http://mummer.sourceforge.net/examples
» walkthroughs
- Email
- mummer-help@lists.sourceforge.net

Acknowledgements

Schatz Lab
Giuseppe Narzisi
Shoshana Marcus
Rob Aboukhalil
Mitch Bekritsky
Charles Underwood James Gurtowski
Alejandro Wences

Hayan Lee
Rushil Gupta
Avijit Gupta
Shishir Horane
Deepak Nettem
Varrun Ramani
Eric Biggers

CSHL
Hannon Lab
Iossifov Lab
Levy Lab
Lippman Lab
Lyon Lab
Martienssen Lab
McCombie Lab
Ware Lab
Wigler Lab

NBACC
Adam Phillippy
Sergey Koren

JHU/UMD
Steven Salzberg Mihai Pop
Ben Langmead Cole Trapnell

Thank You!
 http://schatzlab.cshl.edu/

